Smiling Man
Previous Image | Next Image
Description:
Equation:
$Q_{n} = \frac{1 - Z_{n} + {Z_{0}}^{1024} }{2 + Z_{n}*Z_{0}}$

$\begin{cases} & \text{ if } \bigg(Re(Z_{n}) < Im(Z_{n})\bigg) \qquad R_{n}=i*conj(Q_{n}) \\ & \text{ else }\qquad R_{n} = Q_{n} \end{cases}$

$Z_{n+1} = R_{n}+C$

Where:
$C=0.5714285714285714-0.5714285714285714*i$

Escape Occurs When:
The distance between Z_{n} and Z_{0}  is less than 0.5

Iterations:
255

Center of Window:
$(-0.44003483333333326, 0.1344042666666669)$

Window Width:
$4.0*10^{-5}$
Stats:
Views: 40
Total Favorities: 0 View Who Favorited
Filesize: 1.45MB
Height: 3000 Width: 2400
Discussion Topic: View Topic
Posted by: AlexH September 13, 2018, 02:41:15 AM

Rating: by 1 members.
Total Likes: 1

 AlexH Fractal Fanatic Offline Posts: 35 September 13, 2018, 02:44:03 AMFor some reason I can't edit my gallery posts. I noticed an error. The conditional in the middle of the equations should use an absolute value on the real and imaginary components.$\begin{cases} & \text{ if } \bigg(|Re(Z_{n}|) < |Im(Z_{n}|)\bigg) \qquad R_{n}=i*conj(Q_{n}) \\ & \text{ else }\qquad R_{n} = Q_{n}\end{cases}$ AlexH Fractal Fanatic Offline Posts: 35 September 13, 2018, 02:46:48 AMThird time's the charm...The conditional should be on $$Q_{n}$$, not $$Z_{n}$$.$\begin{cases} & \text{ if } \bigg(|Re(Q_{n}|) < |Im(Q_{n}|)\bigg) \qquad R_{n}=i*conj(Q_{n}) \\ & \text{ else }\qquad R_{n} = Q_{n}\end{cases}$ gerson Fractal Fruit Salad Offline Posts: 60 September 14, 2018, 08:48:17 PMLiked it, as usual.